Nonnative Lake Trout Result in Yellowstone Cutthroat Trout Decline and Impacts to Bears and Anglers

Fisheries ◽  
2005 ◽  
Vol 30 (11) ◽  
pp. 10-19 ◽  
Author(s):  
Todd M. Koel ◽  
Patricia E. Bigelow ◽  
Philip D. Doepke ◽  
Brian D. Ertel ◽  
Daniel L. Mahony
Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1629 ◽  
Author(s):  
Todd M. Koel ◽  
Colleen R. Detjens ◽  
Alexander V. Zale

Preventing the interbasin transfer of aquatic invasive species is a high priority for natural resource managers. Such transfers can be made by humans or can occur by dispersal through connected waterways. A natural surface water connection between the Atlantic and Pacific drainages in North America exists at Two Ocean Pass south of Yellowstone National Park. Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri used this route to cross the Continental Divide and colonize the Yellowstone River from ancestral sources in the Snake River following glacial recession 14,000 bp. Nonnative lake trout Salvelinus namaycush were stocked into lakes in the Snake River headwaters in 1890 and quickly dispersed downstream. Lake trout were discovered in Yellowstone Lake in 1994 and were assumed to have been illegally introduced. Recently, lake trout have demonstrated their ability to move widely through river systems and invade headwater lakes in Glacier National Park. Our objective was to determine if lake trout and other nonnative fish were present in the connected waters near Two Ocean Pass and could thereby colonize the Yellowstone River basin in the past or future. We used environmental DNA (eDNA), electrofishing, and angling to survey for lake trout and other fishes. Yellowstone cutthroat trout were detected at nearly all sites on both sides of the Continental Divide. Lake trout and invasive brook trout S. fontinalis were detected in Pacific Creek near its confluence with the Snake River. We conclude that invasive movements by lake trout from the Snake River over Two Ocean Pass may have resulted in their colonization of Yellowstone Lake. Moreover, Yellowstone Lake may be vulnerable to additional invasions because several other nonnative fish inhabit the upper Snake River. In the future, eDNA collected across smaller spatial intervals in Pacific Creek during flow conditions more conducive to lake trout movement may provide further insight into the extent of non-native fish invasions in this stream.


2011 ◽  
Vol 68 (12) ◽  
pp. 2132-2145 ◽  
Author(s):  
John M. Syslo ◽  
Christopher S. Guy ◽  
Patricia E. Bigelow ◽  
Philip D. Doepke ◽  
Brian D. Ertel ◽  
...  

Introduced lake trout ( Salvelinus namaycush ) threaten to extirpate native Yellowstone cutthroat trout ( Oncorhynchus clarkii bouvieri ) in the 34 000 ha Yellowstone Lake in Yellowstone National Park, USA. Suppression (and eventual eradication) of the lake trout population is deemed necessary for the conservation of Yellowstone cutthroat trout. A US National Park Service gill-netting program removed nearly 450 000 lake trout from Yellowstone Lake from 1995 through 2009. We examined temporal variation in individual growth, body condition, length and age at maturity, fecundity, mortality, and population models to assess the efficacy of the lake trout suppression program. Population metrics did not indicate overharvest despite more than a decade of fish removal. The current rate of population growth is positive; however, it is lower than it would be in the absence of lake trout suppression. Fishing effort needs to increase above observed levels to reduce population growth rate below replacement. Additionally, high sensitivity of population growth rate to reproductive vital rates indicates that increasing fishing mortality for sexually mature lake trout may increase the effectiveness of suppression. Lake trout suppression in Yellowstone Lake illustrates the complexities of trying to remove an apex predator to restore a relatively large remote lentic ecosystem with a simple fish assemblage.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 264
Author(s):  
Stephanie C. Driscoll ◽  
Hayley C. Glassic ◽  
Christopher S. Guy ◽  
Todd M. Koel

Microplastics have been documented in aquatic and terrestrial ecosystems throughout the world. However, few studies have investigated microplastics in freshwater fish diets. In this study, water samples and three trophic levels of a freshwater food web were investigated for microplastic presence: amphipods (Gammarus lacustris), Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri), and lake trout (Salvelinus namaycush). Microplastics and other anthropogenic materials were documented in water samples, amphipods, and fish, then confirmed using FTIR (Fourier-transform infrared) and Raman spectroscopy. Our findings confirmed the presence of microplastics and other anthropogenic materials in three trophic levels of a freshwater food web in a high-elevation lake in a national park, which corroborates recent studies implicating the global distribution of microplastics. This study further illustrates the need for global action regarding the appropriate manufacturing, use, and disposal of plastics to minimize the effects of plastics on the environment.


Author(s):  
Jamie Crait ◽  
Merav Ben-David ◽  
Bob Hall

Yellowstone National Park (YNP) is a treasured national resource and an important element of tourism and the recreational economy in Wyoming. Because of its unique geological features and abundant wildlife and fisheries, YNP is a tourist destination for millions of people annually. Although this national symbol is cherished for its pristine condition and has been protected from most human influence for over 100 years, human mediated invasions of non­ indigenous species, such as several species of plants and animals, including an exotic snail (Potamopyrgus antipodarum), may alter this ecosystem. Recently an unauthorized introduction of lake trout (Salvelinus namaycush) to Yellowstone Lake was documented. Recent investigation at the University of Wyoming, indicated that in-lake predation by lake trout on juvenile and sub-adult native Yellowstone cutthroat trout (Oncorhyncus clarki bouvieri) could negatively influence recruitment of cutthroat trout (Stapp and Hayward 2002). This may lead to significant reductions in numbers of spawning adult cutthroat if current management actions are ineffective, or if they are not continuously pursued (Stapp and Hayward 2002). While lake trout invasion in Yellowstone Lake will likely have detrimental effects on in-lake communities and processes, reductions in populations of native cutthroat trout can potentially impact other aquatic and terrestrial ecosystems outside of Yellowstone Lake. Cutthroat trout in Yellowstone Lake annually migrate into tributary streams and rivers to spawn (Varley and Gresswell 1988), with runs up to 60,000 trout per season into small streams such as Clear Creek (Gresswell and Varley 1988). This spawning migration may significantly affect in­ stream communities (cf. Power 1990) and alter nutrient cycling within tributary streams (Peterson et al. 1993) and in the adjacent riparian forests (Ben­David et al. 1998; Hilderbrand et al. 1999). Therefore, spawning cutthroat trout not only have trophic effects on their ecosystem but also act as "ecosystem engineers" (i.e., species that influence structure and function of ecosystems through non­ trophic processes) because of their role in transporting large amounts of nutrients between ecosystems (Jones et al. 1994). Reductions in spawning adult cutthroat trout will likely alter in­stream processes. In addition, for piscivorous (fish­eating) predators, a significant decline in the number of adult spawning cutthroat trout may reduce recruitment and survival, and it could threaten viability of predator populations. In this project we are investigating the role of cutthroat trout in structuring stream ecosystems, their importance to a representative fish-predator - the river otter (Lontra canadensis), and possible effectson terrestrial plants through nutrient transport by otters to latrine sites (Ben-David et al. 1998 Hilderbrand et al. 1999). We hypothesize that the spawning migration of cutthroat trout will result in transport of nutrients from lake to streams, and from streams to terrestrial forests, through the activity of piscivorous predators. Because nitrogen (N) limits production in area streams (J. L. Tank and R 0. Hall unpublished data) and terrestrial ecosystems (Nadelhoffer et al. 1995) we focus our investigation of nutrient cycling on this element. These observations will enable us to predict how streams, trout predators, and the terrestrial landscape will be affected following cutthroat trout decline.


Author(s):  
Ryan Kovach ◽  
Lisa Eby

The cutthroat trout Oncorhynchus clarki is Wyoming's only native trout. The Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) is designated as a "species of special concern" by a number of agencies and conservation groups. Although the Yellowstone cutthroat trout has recently avoided federal listing because of robust headwater populations (USFWS 2006), they face continued threats across their range. The fine-spotted Snake River native trout is a morphologically divergent ecotype of the Yellowstone subspecies, although it is not genetically distinguishable (Allendorf and Leary 1988, Novak et al. 2005). The Gros Ventre, an important tributary of the Snake River located partially in Grand Teton National Park, historically supported robust populations of fine­ spotted Snake River cutthroat trout. Principal threats to Gros Ventre native trout, especially in the lower end of the drainage within the park boundaries, include both water diversions (loss of water and fish into irrigation ditches) and presence of exotic species.


Author(s):  
Patrick Uthe ◽  
Robert Al-Chokhachy

The Upper Snake River represents one of the largest remaining strongholds of Yellowstone cutthroat across its native range. Understanding the effects of restoration activities and the diversity of life-history patterns and factors influencing such patterns remains paramount for long-term conservation strategies. In 2011, we initiated a project to quantify the success of the removal of a historic barrier on Spread Creek and to evaluate the relative influence of different climate attributes on native Yellowstone cutthroat trout and non-native brook trout behavior and fitness. Our results to date have demonstrated the partial success of the dam removal with large, fluvial Yellowstone cutthroat trout migrating up Spread Creek to spawn, thus reconnecting this population to the greater Snake River metapopulation. Early indications from mark-recapture data demonstrate considerable differences in life-history and demographic patterns across tributaries within the Spread Creek drainage. Our results highlight the diversity of life-history patterns of resident and fluvial Yellowstone cutthroat trout with considerable differences in seasonal and annual growth rates and behavior across populations. Continuing to understand the factors influencing such patterns will provide a template for prioritizing restoration activities in the context of future challenges to conservation (e.g., climate change).


1999 ◽  
Vol 77 (12) ◽  
pp. 1984-1990 ◽  
Author(s):  
James R Lovvorn ◽  
Daniel Yule ◽  
Clayton E Derby

We studied the relative vulnerability of Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) versus rainbow trout (Oncorhynchus mykiss) stocked as fingerlings in the North Platte River, Wyoming, to Double-crested Cormorant (Phalacrocorax auritus) predation. Cutthroat fingerlings decreased as a fraction of the population from stocking in late June to electrofishing surveys in the following October and March. In contrast, the fraction of cutthroat fingerlings among tagged fingerlings eaten by cormorants collected on the river was significantly greater than that in the population when originally stocked. More limited data from pellets regurgitated by adult cormorants at a nearby colony and in American White Pelicans (Pelecanus erythrorhynchos) collected on the river showed the same trend toward greater percentages of cutthroat trout being consumed than were present among trout stocked. There were no differences in cormorant predation rates on the Eagle Lake strain of rainbow trout reared under shaded versus partially shaded conditions, or between Auburn and Bar BC strains of Snake River (Yellowstone) cutthroat trout. On the North Platte River, cutthroat trout fingerlings were more susceptible to cormorant predation than rainbow trout of similar size that were stocked simultaneously.


Author(s):  
Robert Al-Chokhachy ◽  
Mike Lien ◽  
Bradley B. Shepard ◽  
Brett High

Climate change and non-native species are considered two of the biggest threats to native salmonids in North America. We evaluated how non-native salmonids and stream temperature and discharge were associated with Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) distribution, abundance, and body size, to gain a more complete understanding of the existing threats to native populations. Allopatric Yellowstone cutthroat trout were distributed across a wide range of average August temperatures (3.2 to 17.7ºC), but occurrence significantly declined at colder temperatures (<10 ºC) with increasing numbers of non-natives. At warmer temperatures occurrence remained high, despite sympatry with non-natives. Yellowstone cutthroat trout relative abundance was significantly reduced with increasing abundance of non-natives, with the greatest impacts at colder temperatures. Body sizes of large Yellowstone cutthroat trout (90th percentile) significantly increased with warming temperatures and larger stream size, highlighting the importance of access to these more productive stream segments. Considering multiple population-level attributes demonstrates the complexities of how native salmonids (such as Yellowstone cutthroat trout) are likely to be affected by shifting climates.


Sign in / Sign up

Export Citation Format

Share Document